English

http://www.med.miyazaki-u.ac.jp/home/english/laboratories/pharmacology/

 

 

Publications

2020

Sulistomo HW, Nemoto T, Kage Y, Fujii H, Uchida T, Takamiya K, Sumimoto H, Kataoka H, Bito H, and Takeya R. Fhod3 controls the dendritic spine morphology of specific subpopulations of pyramidal neurons in the mouse cerebral cortex. Cerebral Cortex  bhaa355, doi: 10.1093/cercor/bhaa355.  Free-access article link

 

2019

Sanematsu F, Kanai A, Ushijima T, Shiraishi A, Abe T, Kage Y, Sumimoto H, Takeya R. Fhod1, an actin-organizing formin family protein, is dispensable for cardiac development and function in mice. Cytoskeleton (Hoboken). 2019 Feb;76(2):219-229. doi: 10.1002/cm.21523.

 

2018

Matsuyama S, Kage Y, Fujimoto N, Ushijima T, Tsuruda T, Kitamura K, Shiose A, Asada Y, Sumimoto H, Takeya R. Interaction between cardiac myosin-binding protein C and formin Fhod3. Proc Natl Acad Sci U S A. 2018 Apr 23. pii: 201716498. doi: 10.1073/pnas.1716498115.

Sulistomo HW, Nemoto T, Yanagita T, Takeya R. Formin homology 2 domain-containing 3 controls neural plate morphogenesis in mouse cranial neurulation by regulating multidirectional apical constriction. J Biol Chem. 2018 Dec 20. pii: jbc.RA118.005471. doi: 10.1074/jbc.RA118.005471.

 

2017

Ushijima T, Fujimoto N, Matsuyama S, Kan-o M, Kiyonari H, Shioi G, Kage Y, Yamasaki S, Takeya R, Sumimoto H. The actin-organizing formin protein Fhod3 is required for postnatal development and functional maintenance of the adult heart in mice. J Biol Chem. 2018 Jan 5;293(1):148-162.

 

2016

Fujimoto N, Kan-o M, Ushijima T, Kage Y, Tominaga R, Sumimoto H, Takeya R. Transgenic Expression of the Formin Protein Fhod3 Selectively in the Embryonic Heart: Role of Actin-Binding Activity of Fhod3 and Its Sarcomeric Localization during Myofibrillogenesis. PLoS One. 2016;11:e0148472.

 

2015

Yanagihara T, Sanematsu F, Sato T, Uruno T, Duan X, Tomino T, Harada Y, Watanabe M, Wang Y, Tanaka Y, Nakanishi Y, Suyama M, Fukui Y. Intronic regulation of Aire expression by Jmjd6 for self-tolerance induction in the thymus. Nat Commun. 2015;6:8820.

Yanagita T, Nemoto T, Takeya R. [Role-play for pharmacology education: active learning through the Case & Communication based approach]. Nihon Yakurigaku Zasshi. 2015;146:115-8.

2014

Watanabe M, Terasawa M, Miyano K, Yanagihara T, Uruno T, Sanematsu F, Nishikimi A, Côté JF, Sumimoto H, Fukui Y. DOCK2 and DOCK5 act additively in neutrophils to regulate chemotaxis, superoxide production, and extracellular trap formation. J Immunol. 2014;193:5660-7.

Ogawa K, Tanaka Y, Uruno T, Duan X, Harada Y, Sanematsu F, Yamamura K, Terasawa M, Nishikimi A, Côté JF, Fukui Y. DOCK5 functions as a key signaling adaptor that links FcεRI signals to microtubule dynamics during mast cell degranulation. J Exp Med. 2014 ;211:1407-19.

Nakamura K, Shimizu T, Yanagita T, Nemoto T, Taniuchi K, Shimizu S, Dimitriadis F, Yawata T, Higashi Y, Ueba T, Saito M. Angiotensin II acting on brain AT1 receptors induces adrenaline secretion and pressor responses in the rat. Sci Rep. 2014; 4: 7248.

Tamura R, Nemoto T, Maruta T, Onizuka S, Yanagita T, Wada A, Murakami M, Tsuneyoshi I. Up-regulation of Na(V)1.7 sodium channels expression by tumor necrosis factor-α in cultured bovine adrenal chromaffin cells and rat dorsal root ganglion neurons. Anesth Analg. 2014; 118: 318-324  

Nemoto T, Toyoshima-Aoyama F, Yanagita T, Murata T, Fujita H, Koshida T, Yonaha T, Wada A, Sawaguchi A, Murakami M. New insights concerning insulin synthesis and its secretion in rat hippocampus and cerebral cortex: Amyloid-β1-42-induced reduction of proinsulin level via glycogen synthase kinase-3β. Cellular Signal. 2014; 26: 253-259.

Tanaka K, Shimizu T, Yanagita T, Nemoto T, Nakamura K, Taniuchi K, Dimitriadis F, Yokotani K, Saito M. Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat. Br J Pharmacol. 2014; 171: 202-213.