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Highlights
What are the main findings?
• A non-contact method for measuring neonatal head circumference using a 3D imaging

sensor was developed.

What is the implication of the main finding?

• A top-view 3D imaging system can be used to estimate the head circumferences of
neonates without direct contact, ensuring safety for their delicate skin. Because some
portions of the head may be missing in the top-view images, these missing areas are esti-
mated using mat information. The extracted features and head surface values contribute
to the head circumference measurement. This approach enhances the feasibility of non-
contact head circumference measurement, which could improve neonatal monitoring in
clinical settings.

Abstract: In Japan, birth rates are declining, but there are a rising number of underweight
newborns who require specialized care in neonatal intensive care units (NICUs). Head
circumference is an important indicator of brain development for low-birth-weight infants.
However, measuring head circumference requires extreme care because low-birth-weight
infants have fragile skin. Therefore, a non-contact measurement system using a 3D imaging
sensor was developed. Using this system, three-dimensional data for a newborn’s head
can be obtained from outside the incubator. Briefly, the images are taken from above the
incubator, so there is an area behind the head that cannot be captured by the camera, but the
head circumference estimation takes into account the fact that the head is in contact with
the mat. The proposed method allows head circumference estimation without touching the
newborn. This approach minimizes stress for both the neonate and the nurse and improves
efficiency and safety in the NICU.

Keywords: newborns; head circumference; mat; 3D imaging sensor; incubator

1. Introduction
In Japan, the birth rate is gradually decreasing, but the number of preterm infants is

steadily increasing [1–4]. Premature infants experience frequent aversive procedures, excess
handling, disturbance of rest, noxious oral stimulation, noise, and bright light. These are
all sources of stress and physiological instability, which may lead to medical complications
such as intraventricular hemorrhage and necrotizing enterocolitis. This raises concerns
about the need for specialized training for healthcare providers to support the normal
development of premature babies. On the other hand, the sensitivity required in neonatal
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care leads to emotional stress and high workloads for nurses. Therefore, some sensor-based
technical advancements have been introduced in NICUs, such as behavior analysis and
monitoring systems [5–7].

Measuring head circumference is a crucial aspect of monitoring an infant’s brain
development. The regular monitoring of head circumference allows healthcare providers
to track growth over time, ensuring that infants’ brains are developing appropriately.
Establishing accurate measurements can help to identify any deviations from expected
growth patterns, enabling early diagnosis and the management of potential complications
such as hydrocephalus [8–10]. In traditional methods, a soft tape measure is used to confirm
the growth patterns of newborns. However, for newborns, especially premature babies
with extremely delicate skin [11–13], using a traditional soft tape measure presents several
challenges. The manual process is susceptible to human error, as variations in positioning
and newborn movement can lead to inconsistent readings. Additionally, direct contact
increases the risk of infection and may disrupt the newborn’s growth cycle. Healthcare
providers must carefully manage multiple factors that can influence measurement accuracy.
Consequently, barriers from traditional measurements in practical applications can be
significantly large [14,15]. Therefore, there is a need for effective tools and techniques
to measure head circumference in a safe and hands-free manner. Head circumference
measurement using smartphone images (2D images) has been introduced [16].

In 2D image processing, the distance between the camera and objects can significantly
affect measurement accuracy. When the camera is positioned closer to the object, the
object appears larger in the captured image, whereas if the camera is farther away, the
object appears smaller. Moreover, the perspective of 2D cameras to the images is also
important for obtaining a standard shape of newborns. This perspective distortion can lead
to errors in size estimation, leading to imprecise measurements. To solve this issue, depth
information from 3D imaging sensors is employed to ensure consistency in size estimation
across varying distances. In recent years, with the introduction of 3D imaging sensors such
as Microsoft Kinect (Microsoft Corporation, Washington, DC, USA), Intel RealSense (Intel
Corporation, California, USA), and ASUS Xtion2 (ASUSTeK Computer Inc., Taiwan), it has
become possible to obtain three-dimensional (3D) data in a single image, aiding in motion
capture and modeling systems [17–20]. Some human body measurement systems using 3D
imaging sensors have recently been introduced [21–27].

Therefore, a non-contact head circumference measurement method for newborns using
a 3D imaging sensor was introduced. Three-dimensional imaging technology captures top
views of newborns’ heads, which are then processed using image-processing techniques to
measure their circumferences. However, when the camera captures images from the top,
some portions of the head are invisible. To address this issue, this study proposes a new
approach that takes into account the fact that the head is in contact with the mat. In this
study, we introduced the following developments of our measurement system for practical
uses in the NICU.

(1) A measurement system using 3D imaging sensors in the NICU is introduced. The cam-
era placement, additional components, and environmental considerations required
for development are described in detail.

(2) To obtain precise measurements, a 3D measurement approach is preferred in this sys-
tem. Therefore, the 3D data transformation method, which converts depth information
into real-world coordinates, is also introduced.

(3) The body and head detection technique for YOLOv5 model development, along with
its performance in generalization for practical applications, is discussed. The data
collection, dataset preparation, and evaluation methods used to determine the model’s
accuracy are also highlighted.
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(4) The determination of the mat area and the newborn’s head area in world coordinates
is discussed. Their role in estimating missing head locations is explained in detail,
including the methods used to estimate occluded regions by using a 3D image-
processing technique.

(5) Then, features of the head are obtained from the three-dimensional shape of the head
and the mat position, and the features are used to estimate the head circumference
using a machine learning algorithm.

(6) In developing and validating this system, we collected a total of 184 ideal images
of newborns from the NICU, and those data were used to determine the system’s
performance. This study introduces a non-contact method for measuring head cir-
cumference and demonstrates its potential to provide significant benefits for both the
neonate and the healthcare professional.

2. Difficulties in Manual Head Circumference Measurement
in Incubators

Generally, the standard birth weight for newborns is around 3000 g. However, some
newborns are born with significantly lower weights, often below 1000 g, classifying them
as low-birth-weight newborns. Due to their delicate nature, these newborns require spe-
cialized medical attention and are cared for in incubators until they are strong enough to
thrive outside them. Incubators provide a controlled environment with stable temperature
and humidity, which helps to regulate low-birth-weight newborns’ body temperatures,
protect them from infections, and reduce stress on their developing systems. These con-
trolled conditions are crucial for newborns who need specialized care and treatment. A
low-birth-weight newborn in an incubator is shown in Figure 1.
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Figure 1. Newborn in NICU.

However, these incubators make it difficult for healthcare providers to take care of
newborns because they limit access to the newborns. Their enclosed design makes it
difficult to measure growth. Additionally, healthcare providers need to carefully open,
close, and manage their work in the incubators with minimal discomfort to the newborns.
Therefore, extra precautions must be taken before, during, and after manual measurements,
increasing the workload and measurement time. Although head circumference measure-
ment is important for early healthcare assessment, traditional soft tape measurements are
not ideal inside incubators, where the restricted space and limited accessibility make it
difficult to obtain precise measurements.
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3. Materials and Methods
3.1. Measurement System

The 3D measurement system used for head circumference assessment in the NICU is
shown in Figure 2. The system consists of a 3D imaging sensor (Intel RealSense D435i, Intel
Corporation, Santa Clara, CA, USA) and a laptop PC (Microsoft Surface Pro 9 with a 12th
Gen Intel® Core™ i7-1255U processor and 16 GB of LPDDR4x RAM, Microsoft Corporation,
Washington, DC, USA) and allows head circumference measurement using non-contact
one-shot images from outside the incubator. The Intel RealSense D435i is an RGB-D camera
capable of capturing red, green, and blue (RGB) color data along with depth information
simultaneously in a single frame. Because the depth information is integrated with the
color stream, it enables the 3D reconstruction of the image scene for measuring newborns’
shapes. To increase measurement accuracy, the Intel RealSense D435i has already been
calibrated for intrinsic and extrinsic parameters to reduce the distortions. Moreover, the
RealSense D435i camera is resistant to outdoor lighting conditions, making it suitable for
both indoor and outdoor use. This ensures that lighting variations, whether bright or dim,
have no impact on its performance in different NICUs.
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Figure 2. Measurement system.

The one-shot image can be acquired in 1/30th of a second, eliminating the need to
account for the newborn’s movements during the measurement process. The RGB-D sensor
captures 16-bit depth images with a resolution of 640 × 480 pixels. These high-resolution
depth data are sufficient for capturing the specific shape of the newborn.

In this setup, the incubators are constructed from transparent materials, which can
potentially reflect light and interfere with the 3D imaging process. To solve this problem,
the ability of the 3D imaging sensor to detect infrared light is utilized. A filter that absorbs
visible light (CLAREX NIR-85N, Nitto Jushi Kogyou Co., Ltd.,Tokyo, Japan) is attached to
the lens position of the infrared sensor. This approach helps to minimize reflections that
could distort the data collected by the sensor, ensuring that the captured images provide
accurate measurements of the newborn’s head circumference.

3.2. Coordinate Systems

The coordinate systems of the measurement setup are shown in Figure 3. The origin
Og of the global coordinates (x, y, z) is set to the camera position. The RGB-D camera
generates the depth image with the color image. The coordinate system of the depth image
plane is (u, v) with the origin Od at the intersection with the global coordinate z-axis. The
distance zp from the origin point Og is recorded at (ud, vd) in the depth image. The depth
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image plane can be assumed to be at a distance f from the origin point Og. A point (xp, yp,
zp) on the neonate surface is represented in these coordinate systems [28] as follows:

xp = −
zp

f
ud (1)

yp = −
zp

f
vd (2)

where ud and vd are points on the depth image, and zp can be obtained from the depth image.
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An example of a color image with a depth image captured by Intel RealSense D435i
is shown in Figure 4a, and the converted 3D point cloud data from the depth image are
shown in Figure 4b.

3.3. Flow of Head Circumference Estimation

Figure 5 shows a flow chart for head circumference estimation. The body and head
are extracted from the captured image using YOLOv5 [29,30]. The data of the mat are also
extracted from the extracted body perimeter. To reduce small noises in the 2D extracted
image, a morphology algorithm is applied to remove isolated pixels and refine the object
boundaries [31]. This algorithm efficiently minimizes the effects of unwanted artifacts that
interfere with object segmentation. The morphology operation systematically reduces noise,
ensures more accurate feature extraction, and ultimately improves the overall reliability of
the measurement process. The extracted information is converted into three-dimensional
point cloud data. Because the orientation of the camera and the posture of the newborn
change slightly, PCA (principal component analysis) [32] is used to align the body orien-
tation. Principal component analysis reveals the component with the greatest variation
among the three-dimensional components of the point cloud data. The direction of the body
with the largest variation is the orientation of the body, because the longitudinal direction
of the body has the largest variation. In addition, the head positioning information is used
to align the head to the left and the feet to the right. The mat surface is approximated as a
plane, and this surface is used as the base. Considering the extracted head dimensions and
the fact that the head is in contact with the mat, the head circumference is estimated using
machine learning. The estimated results are displayed.
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Figure 4. Conversion of 3D data. (a) Example of color image with depth image. (b) 3D transformation
of depth image.
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3.3.1. Three-Dimensional Data of Head and Mat Extraction

The first step in measurement is to extract the head and body in the captured image.
In this system, YOLOv5 is employed to distinguish the head and body. Figure 6a illustrates
the result of newborn detection using YOLOv5. The pink rectangle highlights the head
detection results, while the yellow rectangle indicates body detection. Because YOLOv5
may include irrelevant parts of the newborn or background within the bounding boxes,
the GrabCut algorithm [33] is employed to isolate the body and head from its background.
The 3D output data of the GrabCut algorithm are shown in Figure 6b. The area around the
newborn’s body is detected as a mat.
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3.3.2. Feature Extraction

Because the image is captured from above, only the upper surface of the head is visible,
making it difficult to obtain the complete 3D structure of the head. However, acquiring head
measurements from those invisible portions is also essential for accurate measurement.
These missing areas are estimated using mat information. In most NICUs, towels are
often used on the bed; variations in towel thickness, folding patterns, and placement
complicate the process, introducing potential inaccuracies in accurately calculating the
mat’s location relative to the camera. The mat on which a newborn infant lies, such as
a blanket, is not a flat surface. Because the mat’s positional information is crucial for
head circumference estimation, it is important to detect it reliably, even when the mat
is not flat. To overcome these issues, a plane equation with the least square method is
utilized, providing a more stable and consistent method for horizontal 3D mat detection.
Equation (3) is used to generate the horizontal 3D mat location in the global coordinates.
To achieve this, RANSAC (random sample consensus) is used, as it effectively identifies
geometric shapes from noisy data [34]. RANSAC is an iterative method for estimating a
mathematical model from a dataset containing noise. This approach significantly improves
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the precision of measurements, enabling the determination of the mat’s correct position
relative to the camera.

Figure 7 illustrates an example of 3D point cloud data for a mat. As shown, the data
exhibit undulations due to the blanket’s shape. First, several data points are randomly
sampled from the point cloud to derive a plane equation using Equation (3). The number
of points near this plane is then counted to evaluate the plane equation’s consistency. A
higher count indicates a better match between the plane and mat, as more point clouds
align with the plane. Next, the plane equation is recalculated using a different randomly
selected subset of mat data, and its consistency is re-evaluated using the same method.
This process is repeated multiple times, and the plane with the highest evaluation value is
determined to be the optimal representation of the mat’s surface.

Ax + By + Cz = 1 (3)

where

A
B
C

 =


x1 y1 z1

x2 y2 z2

: : :
xn yn zn


*

1
1
:
1

, * is a pseudomatrix, and (xn, yn, zn) are point cloud

data of the mat.
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In manual newborn head circumference measurement, the newborn is measured in
the supine position. The head circumference is measured from the external occipital ridge
through just above the right and left eyebrows. However, from outside the incubator,
the baby’s position can vary from supine, face down, or sideways. To determine a stable
measurement position, a spherical approximation using the least-squares method is used
to determine the cross-sectional position from which the head circumference is estimated.
Using the head data that can be obtained, the following equation in general form is used to
determine the sphere approximation:

(x − a)2 + (y − b)2 + (z − c)2 = r2 (4)

where center position of sphere is (a, b, c), and radius is r.
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On the other hand, in standard form:

x2 + y2 + z2 + kx + ly + mz + n = 0 (5)

The center position (a, b, c) of sphere is
a = − k

2
b = − l

2
c = −m

2

where 
k
l

m
n

 =


x1 y1 z1

x2 y2 z2

: : :
xn yn zn


∗

−x2
1 − y2

1 − z2
1

−x2
2 − y2

2 − z2
2

:
−x2

n − y2
n − z2

n1

 (6)

* is a pseudomatrix, and (xn, yn, zn) are point cloud data for the head.
The estimated sphere is superimposed on the point cloud data of the head in Figure 8a.

The vertical plane passing through the center of the sphere was used as the measurement
position for the head circumference to avoid it being affected by the orientation of the
head. Figure 8b shows a cross-section of the head at this vertical plane position. In this
figure, the bottom straight line indicates the mat position. Because the head is in contact
with the mat, the head height can be calculated from the distance from the mat position.
Because the images are taken from above the newborn, the shape of the head in contact
with the mat and the left and right shapes of the head are not known. Therefore, head
circumference estimation was performed using machine learning based on the height of
the left and right sides of the head and the length of the upper surface of the head. These
features are used in a random forest algorithm [35–38] to calculate the head circumference.
Although there are parts of the head that cannot be seen because the images are taken from
outside the incubator, if the head circumference can be estimated from the limited number
of features that can be captured, the practicality of this method in the medical field can be
demonstrated. In Figure 8c, feature extraction on different images is demonstrated.
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4. Results and Discussion
4.1. Data Collection

The Perinatal Maternal and Child Health Center of University of Miyazaki Hospital
is a comprehensive perinatal medical center with a 9-bed NICU for the management of
newborns and a 12-bed Growing Care Unit. It also has two delivery rooms and three
maternal–fetal intensive care units for the 24-h monitoring of high-risk pregnant women
and fetuses. The center admits about 150 newborns each year, including about 30 very low-
birth-weight babies weighing less than 1000 g. The center also provides risk management
for morbid newborns, who may weigh less than 500 g. In this NICU, data on the physical
measurements of newborns are collected. Because the center manages newborns from birth
to discharge, there were no obstacles to collecting data on newborns’ physical measurements
for experiments.

Ethical approval was obtained before data collection. The dataset consists exclusively
of underweight newborns, and the collection period spanned from 20 September 2023 to
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15 May 2024. Because NICU environments require strict safety measures and controlled
access, direct and frequent physical entry is limited to authorized medical personnel.
Therefore, to minimize unnecessary human presence and reduce the risk, the data collection
process was conducted within the NICU, while subsequent data processing and analysis
were carried out in a separate laboratory. When handling information related to the
implementation of the research, the information was anonymized and managed with a
research number that was unrelated to the personal information of the research subjects, so
that it could not be immediately identified which research subject’s information was being
handled. The correspondence list was stored on a computer disconnected from the network,
and a password was set for the file, which was managed by the information manager.

This separation between data acquisition and processing necessitated the implementa-
tion of a remote-control system, which allowed efficient data transfer and communication
between the NICU and laboratory. By leveraging remote connectivity, real-time data could
be accessed, system performance could be monitored, and software configurations could
be updated as needed without requiring direct physical access to the NICU. This approach
not only ensured a seamless workflow but also contributed to maintaining a safe and
sterile medical environment for the newborns. Additionally, the remote access system
played a crucial role in enhancing the overall efficiency of the study by reducing potential
disruptions in data collection while allowing us to continuously analyze the performance
of the system.

4.2. Dataset Preparation for YOLOv5

The dataset used for YOLOv5 model development is shown in Figure 9. Although
the bodies of newborns are usually in the same orientation in the incubator, doll models in
various orientations were intentionally added to the training data to increase the robustness
of recognition. For body detection, 50% of the data were obtained using model baby objects,
while the remaining 50% were collected from the NICU; for head detection, 20% of the
data were obtained using model baby objects and 80% of the data were taken from the
real newborn dataset from the NICU. The use of model baby objects allowed for capturing
a variety of lighting conditions, different backgrounds, and different angles to enhance
the model’s usability in different real-world applications. Meanwhile, the real newborns’
data represent the original body color and natural body and head poses; this information
is important for the actual newborns’ body and head detection. As access to the data
from the NICU is limited, a combination of model baby objects and the real newborn
dataset from the NICU data ensured a more robust and reliable dataset for developing the
YOLOv5 model because YOLOv5 model development requires a large dataset for effective
generalization; real newborns’ data alone are insufficient.

4.3. Training and Testing for YOLOv5 Process

For the body detection, a total of 2329 images with combination data were used, and
these were divided into training data (2133 images) and testing data (196 images). For the
head detection, a total of 1335 images with combination data were used for YOLOv5 model
development; the training data were 1099 images, and the testing data were 236 images.
The images were annotated using the MakeSense AI web application (December 2024). To
minimize inconsistencies and errors in the ground truth labels, annotation was performed
manually by labeling each body and head location in the images. This process ensured the
precise detection of newborns, improving the accuracy and reliability of the YOLOv5 model.
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The training was conducted on an NVIDIA RTX A5500 GPU (NVIDIA Corporation,
California, USA) with a batch size of 16 over a total of 300 epochs. During training,
the model was optimized using the optimizer with a learning rate scheduler to enhance
convergence and prevent overfitting. For inferences of both models, the weights and biases
were converted separately to ONNX format, and the exported ONNX model (YOLOv5) was
utilized in C++ with OpenCV 4.5.4 for target body and head detection. The performance
was evaluated using the mean average precision (mAP) metric; the mAP score for the
testing data was 98% for body detection and 99% for head detection (Equation (7)). These
results demonstrate the model’s ability to accurately detect newborns’ body and head
positions, making it suitable for real-world applications in neonatal care.

mean Average Precision =
1
n∑n

i=1 APi (7)

where n is the total number of classes, and APi is the average precision for each class. In this
case, AP is computed from the area under the precision–recall (PR) curve. For detection,
the intersection over union where the predicted bounding boxes overlap with the ground
truth bounding boxes is used.

The intersection over union (IoU) finds major use in object detection; it measures how
much a predicted bounding box coming from body and head detection overlaps with the
ground truth bounding box annotated manually (Equation (8)). The IoU was particularly
useful in this study because the precise localization of the newborn’s head is critical for
accurate circumference measurement [39,40].

IoU =
Area o f Overlap
Area o f Union

(8)

where Area of Overlap represents the intersection between the predicted bounding boxes
for body and head detection, while Area of Union represents the total area covered by all
the bounding boxes detected using the developed body and head YOLOv5 models, minus
the overlap area in the detection results.
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4.4. Experimental Results

The rate of low-birth-weight infants is lower than that of normal-weight newborns.
Obtaining data on low-birth-weight newborns is difficult due to their lower occurrence
and the strict conditions required for data collection. Despite these barriers, 184 images
were collected from the NICU. Although a large dataset is better, this dataset was deemed
sufficiently representative for evaluating the proposed approach and demonstrating its
practical feasibility in a rigorous neonatal healthcare environment. These data were divided
into training data and testing data as shown in Figures 10 and 11 for the machine learning-
based head circumference estimation system.
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In this system, manual measurement data obtained using a soft tape measure served
as the ground truth data. The training data were used to train the model by making
it learn features that correlated with the ground truth circumference. To evaluate the
performance of the model and its generalization ability, the model was evaluated using
test data prepared separately. Common regression metrics include the mean absolute error
(MAE), mean squared error (MSE), and root mean squared error (RMSE). However, the MSE
and RMSE are highly sensitive to outliers, which can significantly distort the evaluation
results. In head circumference measurement, newborns’ head and body shapes vary due
to natural movement, positioning, and anatomical differences. Consequently, relying
solely on the MSE or RMSE may lead to misleading performance assessments. The MAE
is preferred because it measures absolute differences without overemphasizing extreme
values, providing a more stable and interpretable evaluation in centimeters. Therefore, the
accuracy was defined using the mean absolute error (MAE) presented in Equation (9). The
average MAE for the testing dataset (comprising 49 images) was calculated.

Mean Absolute Error =
1
n∑n

i=1|yi − ŷi| (9)

where n is the number of testing images, yi is the measurement results obtained using soft
tape, and ŷi is the estimation results obtained using the proposed system.

To assess the regression model’s feasibility, we implemented and evaluated tree-based
algorithms, including decision tree, extra trees regressor, AdaBoost, and random forest
regressor. Table 1 shows a comparison between the algorithms. Among these, random
forest regressor achieved the lowest MAE (0.91 cm), demonstrating the most reliable
performance. Therefore, it was selected for head circumference estimation in our system.
This result demonstrates the model’s effectiveness in estimating head circumference with a
relatively small error margin, highlighting its potential for practical applications.

Table 1. Performance comparison of regression models based on MAE.

Machine Learning Algorithm MAE (cm)

Decision Tree 2.26

Extra Trees Regressor 1.15

AdaBoost 1.32

Random Forest Regressor 0.91

Figure 12 shows the error distribution results for the testing data. According to the
figure, nearly 86% of the images had an error of 1 cm or less. However, some images
exhibited errors greater than 2 cm. Errors exceeding 2 cm were mainly due to two factors:
data limitations and head orientation. The first issue stemmed from machine learning bias
and an imbalanced dataset, particularly for head circumferences below 25 cm and above
35 cm, which were less represented in the training data because head circumferences below
25 cm and above 35 cm are rarely found in incubators. The second issue arose when the
newborn’s head was significantly tilted or sloped, leading to measurement inaccuracies. To
address these challenges, future work will focus on head direction adjustment to improve
the measurement precision.
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Comparison with Other Methods of Measuring Head Circumference

The comparison results for newborn head circumference measurements using our
proposed system, a smartphone-based imaging system [16], and manual measurement
are presented in Table 2. Our system utilizes a three-dimensional imaging system with an
RGB-D camera for non-contact measurement. In contrast, manual measurement requires
direct contact with the newborn, and the 2D smartphone imaging system, while reliable,
requires calibration before measurement and may involve partial contact. As shown in
Table 2, our proposed system offers the most reliable measurements without causing stress
to either newborns or healthcare providers.

Table 2. Comparison between different methods of measuring head circumference.

Manual Measurement Our Proposed Method Smartphone Imaging System

Measurement method Traditional soft tape
measurements.

Three-dimensional image
processing using
RGB-D camera.

Two-dimensional image
processing using smartphone.

Preprocessing
and preparation

Requires set up and
preparation before

measurement.

Immediate processing without
additional steps required.

Some adjustments are
necessary for calibration.

Stress to healthcare provider
and newborn

Physical contact with the
newborn is required.

No physical contact with the
newborn and no management

inside the incubator.

Some contact is required,
though it is less stressful

compared to the
traditional method.

Processing time

It takes longer to perform and
is dependent on the healthcare

provider’s skill and
experience.

Fast and efficient, allowing
quick measurements with 2 s
of processing for each image.

The processing time is not
fully outlined, but it can take
longer due to the additional
time required for calibration.

Cost

Relatively low-cost equipment
but may incur long-term costs

due to errors and repeated
measurements.

Initial investment is higher,
but it offers

long-term benefits.

Smartphones can be a
cost-effective option.
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5. Conclusions
Although a quantitative evaluation is difficult, a questionnaire survey was conducted

among the healthcare staff in the NICU of the University of Miyazaki, Japan, to gather the
opinions of healthcare providers on the development of a non-contact measurement device
using cameras. In this survey, 140 healthcare providers participated, and 99% of them
agreed that it was necessary to develop a non-contact measurement device. Improvement
of stress in nursing work will continue to be revealed in the survey.

Based on this survey, this paper introduces a method for measuring the head circum-
ferences of newborns in the NICU using a 3D imaging sensor. To cope with occlusion and
incomplete data from 3D image processing, this system uses mat information to estimate
the invisible parts of the head and extract features. These features are then processed by a
machine learning algorithm, enabling robust head circumference estimation. The results
demonstrate reliable accuracy, with errors of approximately 1 cm or less in most typical
cases, making the system suitable for practical use. However, some cases exhibit larger error
margins. These errors are primarily attributed to the lack of sufficient data for very small
newborns or those who do not need to be in incubators, which are rare in actual medical
practice, and the head orientations of the newborns in the captured images. These issues
with the data could affect the model’s performance and reliability. Despite these challenges,
the system showcases its potential as a valuable tool for non-contact and efficient head
circumference measurement, contributing to improved neonatal care and monitoring.

6. Future Work
In addition to head circumference, body length and weight are essential parameters

for monitoring the growth and overall health of newborns. These measurements provide
critical insights into neonatal development and help healthcare professionals to assess
potential health risks. Therefore, this non-contact system using a 3D imaging camera for
measuring body length and weight is intended to be used in future work for neonatal
healthcare development. Expanding the system to include these additional measurements
will enhance its clinical applicability, allowing for comprehensive growth monitoring
without direct physical contact. This advancement aims to improve accuracy, reduce stress
for both infants and medical staff, and contribute to the development of a fully automated
neonatal assessment system in NICUs.
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